• Portal do Governo Brasileiro
  • Atualize sua Barra de Governo
  • Ir para o conteúdo 1
  • Ir para o menu 2
  • Ir para a busca 3
  • Ir para o rodapé 4
  • Acessibilidade
  • Alto Contraste
  • Mapa do Site
Topo
Laboratório Nacional de Computação Científica

LNCC

Ministério da Ciência, Tecnologia e Inovações
Instagram Linkedin Facebook YouTube
  • SDumont
  • Imprensa
  • SEI-MCTI
  • Webmail
  • Intranet
  • Fale Conosco
Destaques Result. Programas PCI-LNCC Resultado Final do 1º Processo Seletivo de 2021 Guia de Conduta
logo

O LNCC

  • Histórico
  • Missão
  • Estrutura Organizacional
  • Corpo Técnico Científico
  • Documentos Institucionais
  • Localização

Coordenações

  • Coordenação de Métodos Matemáticos e Computacionais - COMAC
  • Coordenação de Modelagem Computacional - COMOD
  • Coordenação de Pós-graduação e Aperfeiçoamento - COPGA
  • Coordenação de Tecnologia da Informação e Comunicação - COTIC
  • Coordenação de Gestão e Administração - COGEA

Pesquisa e Desenvolvimento

  • Linhas de Pesquisa
  • Produção Técnico-Científica
  • Projetos de P & D
  • Grupos de Pesquisa

Supercomputador SDUMONT - Computação de Alto Desempenho

  • Supercomputador Santos Dumont
  • CENAPAD
  • SINAPAD

Programas Nacionais

  • INCT-MACC
  • LABINFO
  • SINAPAD

Inovação

  • Incubadora
  • NitRio
  • Soluções para Empresas

Programas  Acadêmicos

  • Mestrado e Doutorado
  • Programa de Verão
  • Bolsas de Estudos

Eventos

Biblioteca

  • Biblioteca

Acesso à Informação

  • Institucional
  • Ações e Programas
  • Participação Social
  • Auditorias
  • Receitas e Despesas
  • Licitações, Contratos e Convênios
  • Servidores
  • Informações Classificadas
  • Serviço de Informação ao Cidadão - SIC
  • Perguntas Frequentes
  • Dados Abertos
  • Gestão Documental
  • Agenda do Diretor
  • Carta de serviço ao Cidadão
  • Sobre a Lei de Acesso à Informação
  • Assessoria de Comunicação
  • Ouvidoria
  • Comissão de Ética
  • Gestão de Riscos
  • Guia de Conduta
  • LGPD
 

EVENTO



Multi-Class Discriminant Analysis Based on Support Vector Machine Ensembles

Tipo de evento:
Defesa de Tese de Doutorado


Many areas such as pattern recognition and analysis of image databases require the managing of datasets originally represented in high dimensional spaces. Besides, the original data representation implies, in general, in redundancy and noise. Thus, we must compute a more suitable feature space, reducing both the dimension and redundancy of representation as well as minimizing the computational cost of further operations. Once a feature space has been defined there is the necessity of determining the most important discriminant features for pattern recognition tasks, like classification. Discriminant analysis techniques, which in the literature are known as discriminant functions, seek to solve this type of problem. Thus, the goal of the proposed thesis is to develop discriminant analysis methods for multi-class problems. The key idea is to combine N classifiers to form a global discriminant function, which allows to rank the components of the space according to the importance of each feature to the classification problem. To achieve this goal, we use separate hyperplanes computed by traditional support vector machines (SVMs) or tangent to decision boundaries yielded by Kernel SVM (KSVM), and use the ensemble methodology known as AdaBoost.M2 to combine the linear classifiers. In this case, our proposed techniques seek to generate multiclass versions of the Discriminant Principal Component Analysis (DPCA), which was originally proposed for binary problems. In this work, principal components analysis (PCA), Convolutional neural networks (CNNs) and texture descriptors, are used to create feature space that serve as input to discriminant analysis algorithms. In terms of application for validation of the proposed techniques our focus are human face and texture images obtained from granite tiles. Further works will be undertaken by exploring color images, tensor subspaces as well as to improve performance.

Data Início: 17/05/2019
Hora: 10:00
Data Fim: 17/05/2019
Hora: 14:00

Local:  LNCC - Laboratório Nacional de Computação Ciêntifica - Auditorio A

Aluno:
Tiene Andre Filisbino - LNCC - LNCC

Orientador:
Gilson Antônio Giraldi - Laboratório Nacional de Computação Científica - LNCC

Participante Banca Examinadora:
Aura Conci - Universidade Federal Fluminense - UFF/IC
Fabio André Machado Porto - Laboratório Nacional de Computação Científica - LNCC
Gilson Antônio Giraldi - Laboratório Nacional de Computação Científica - LNCC
Raul Queiroz Feitosa - PUC/RJ - PUC/RJ

Suplente Banca Examinadora:
Artur Ziviani - Laboratório Nacional de Computação Científica - LNCC
Fernando Von Zuben - - UNICAMP


Últimas eventos

  •   Principal
  •   Hotéis/Pousadas
  •   Área do Inscrito
 
 Voltar para o topo
Rodapé

Principal

  • Estrutura Organizacional
  • Corpo Técnico Científico
  • Produção Técnico-Científica
  • Projetos de P & D
  • Mestrado e Doutorado
  • Bolsas de Estudos
  • Seminários
  • Congressos / Escolas / Cursos
  • Biblioteca

Acesso à Informação

  • Institucional
  • Ações e Programas
  • Participação Social
  • Auditorias
  • Receitas e Despesas
  • Licitações, Contratos e Convênios
  • Servidores
  • Informações Classificadas
  • Serviço de Informação ao Cidadão - SIC
  • Perguntas Frequentes
  • Dados Abertos
  • Gestão Documental
  • Agenda do Diretor
  • Carta de serviço ao Cidadão
  • Sobre a Lei de Acesso à Informação
  • Ouvidoria
  • Comissão de Ética
  • Gestão de Riscos
  • Guia de Conduta

Serviços

  • Fale Conosco
  • Assessoria de Comunicação

Redes Sociais

  • Instagram
  • Linkedin
  • Facebook
  • YouTube

Navegação

  • Acessibilidade
  • Mapa do Site

Brasil - Governo Federal   Brasil - Governo Federal